Ethernet Technology
ปัจจุบันเครือข่ายคอมพิวเตอร์ได้มีบทบาทต่อชีวิตประจำวันมากขึ้นทุกขณะการเจริญเติบโตของเครือข่ายคอมพิวเตอร์เหล่านี้เป็นไปอย่างต่อเนื่องและยังไม่มีสัญญานบ่งบอกว่าจะมีการชลอตัวแต่อย่างใดเครือข่ายแบบท้องถิ่นในองค์กรต่างๆ ตลอดจนบริษัทสถานศึกษาส่วนใหญ่กว่า 80% จะนิยมใช้เครือข่าย Ethernet ส่วนที่เหลือก็จะเป็นพวก FDDI/CDDI, ATM และอื่นๆด้วยความต้องการการส่งผ่านข้อมูลที่เพิ่มขึ้นอย่างรวดเร็วตามขนาดและจำนวนเครื่องคอมพิวเตอร์ที่ต่ออยู่บนเครือข่ายตลอดจนการเติบโตของ Internet อย่างรวดเร็วจึงทำให้เครือข่าย Ethernet แบบดั้งเดิมที่มีความเร็วในการ ส่งผ่านข้อมูลอยู่ที่ 10 Mbps เริ่มจะไม่สามารถตอบสนองความต้องการของผู้ใช้ได้อย่างมี ประสิทธิภาพ Gigabit Ethernet (IEEE802.3z) เป็นมาตรฐานใหม่ของเทคโนโลยีเครือข่ายท้องถิ่น (LAN-Local Area-Network) ที่พัฒนามาจากเครือข่ายแบบ Ethernet แบบเก่าที่มีความเร็ว 10 Mbps ให้สามารถรับส่งข้อมูลได้ที่ระดับความเร็ว 1 Gbps ทั้งนี้ เทคโนโลยีนี้ยังคงใช้กลไก CSMS/CD ในการร่วมใช้สื่อเหมือน Ethernet แบบเก่าหากแต่มีการพัฒนาและดัดแปลงให้สามารถรองรับความเร็วในระดับ 1 Gbps ได้ Gigabit Ethernet เป็นส่วนเพิ่มขยายจาก 10 Mbps และ 100 Mbps Ethernet (มาตราฐาน IEEE 802.3 และ IEEE802.3u ตามลำดับ ) โดยที่มันยังคงความเข้ากันได้กับมาตราฐานแบบเก่าอย่าง 100% Gigabit Ethernet ยังสนับสนุนการทำงานใน mode full-duplex โดยจะเป็นการทำงานในการเชื่อมต่อระหว่าง Switch กับ Switch และระหว่าง Switch กับ End Station ส่วนการเชื่อมต่อผ่าน Repeater, Hub ซึ่งจะเป็นลักษณะของ Shared-media (ซึ่ง ใช้ กลไก CSMA/CD) Gigabit Ethernet จะทำงานใน mode Half-duplex ซึ่งสามารถจะใช้สายสัญญาณได้ทั้งสายทองแดงและเส้นใยแก้วนำแสง
หลักการพื้นฐานที่สำคัญของ Gigabit Ethernet (IEEE802.3z) คือ การปรับแก้ส่วนของ MAC Layer (Media Access Control Layer) โดยกลไกที่เรียกว่า Carrier Extension โดยกลไกตัวนี้ จะทำการเพิ่มความยาวของเฟรมที่มีขนาดน้อยกว่า 512 ไบต์ โดยจะทำการเพิ่มข้อมูลเข้าไปยัง ส่วนท้ายของเฟรม เพื่อให้เฟรมข้อมูลนั้นมีขนาดเท่ากับ 512 ไบต์ เหตุที่ต้องทำเช่นนี้ เนื่องมาจากว่าใน Ethernet แบบแรกที่ความเร็ว 10Mbps (IEEE802.3) นั้นได้มีการกำหนดออกแบบเอาไว้ว่าจะต้องสามารถตรวจจับ (detect) การชนการของข้อมูล (Collision) ได้เมื่อเครื่องคอมพิวเตอร์ เครือข่ายที่อยู่ห่างกัน 2 กิโลเมตร ส่งข้อมูลที่มีความยาว 64 ไบต์ ออกมาในจังหวะเวลาที่ทำให้เกิด การชนกันของข้อมูล (Roundtrip Propagation Delay) ซึ่งเมื่อเกิดการชนกันขึ้น MAC Layer จะเป็นตัวที่ตรวจพบและมันจะทำการส่งสัญญาณเพื่อให้เครื่องที่ส่งข้อมูลชนกันหยุดการส่งข้อมูลและทำการสุ่มเวลาเริ่มต้นเพื่อที่จะทำการส่งข้อมูลนั้นใหม่อีกครั้งและใน 100 Mbps (IEEE802.3u) ก็ใช้ข้อกำหนดนี้แต่ความเร็วที่เพิ่มขึ้นได้มาจากการเพิ่มสัญญาณนาฬิกาในการส่ง ข้อมูลให้เร็วขึ้นเป็น 10 เท่า จากของเดิมทำให้เวลาที่ต้องใช้ในการส่งข้อมูลลดลง 10 เท่า ซึ่งทำให้ ระยะห่างสูงสุดระหว่างเครื่องในเครือข่ายลดลง 10 เท่าเช่นกันคือจาก 2 กิโลเมตร เหลือเพียง 200 เมตร แต่เมื่อมีการเพิ่มความเร็วขึ้นอีก 10 เท่าใน Gigabit Ethernet จึงทำให้ระยะห่างดังกล่าวลด ลงเหลือเพียง 20 เมตร บนสาย UTP cat5 ซึ่งไม่สามารถใช้งานได้ในสภาพการทำงานจริง ดังนั้น Carrier Extension นี่เองที่จะเข้ามาทำให้สามารถตัวจับการชนกันของข้อมูลเมื่อเครื่อง คอมพิวเตอร์บนเครือข่ายอยู่ห่างกันที่ระยะ 200 เมตร ขนาดของ เฟรม ที่เล็กที่สุดของ Gigabit Ethernet ซึ่งมีค่าเท่ากับ 512 ไบต์ นั้นจะ ทำให้สามารถตรวจจับการชนกันของข้อมูลได้ที่ความเร็ว ในการส่งข้อมูลเท่ากับ 1 Gbps และระยะห่างสูงสุดที่ 200 เมตร ทั้งนี้ทางคณะทำงานที่กำหนด มาตรฐาน IEEE802.3z ได้ลดจำนวน repeater hop ลงจาก 100Base-T(IEEE802.3u) ที่อนุญาต ให้มีได้ 2 hop (และ 4 hop ใน 10Base-T) ลงเหลือเพียง 1 hop เท่านั้น ทั้งนี้เพื่อเหตุผลในเรื่องการ ลดเวลาในการตรวจสอบการชนกันของข้อมูลนอกจากนี้ ค่าพารามิเตอร์ อื่นๆ ทางวิศวกรรม(ค่าทางไฟฟ้า ) ใน IEEE802.3z จะไม่มีการเผื่อ Safety Factor อีกต่อไป ดังนั้นถ้าผู้ผลิตแต่ละยี่ห้อไม่ได้ใช้ค่าพารามิเตอร์ที่ตรงกันจริงๆ ก็จะทำให้เกิดปัญหาเมื่อนำเอาอุปกรณ์ Gigabit Ethernet ของต่าง ผู้ผลิตมาต่อเชื่อมกันได้
Carrier Extension กับ Throughput
การที่ต้องเพิ่มขนาดของเฟรมที่เล็กว่า 512 ไบต์ด้วยส่วนข้อมูลพิเศษต่อท้ายเพื่อให้มีขนาดเท่ากับ 512 ไบต์นั้นจะทำให้ค่า Throughputลดลงเมื่อมีการส่งข้อมูลที่มีขนาดน้อยกว่า 512 ไบต์เป็นจำนวนมาก ซึ่งในกรณีที่แย่ที่สุดคือการส่งเฟรมขนาด 64 ไบต์ต่อเนื่องกันที่ความเร็ว 1 Gbps จะทำให้ throughput ประมาณ 12% หรือ 120 Mbps เท่านั้นเอง แต่ในการใช้งานจริงการคำนวณหาค่า Throughput นั้นจะหาจาก ขนาดเฉลี่ยของเฟรมที่มีการส่งผ่านใน เครือข่ายนั้นๆ โดยค่านี้จะได้จากการเก็บสถิติแล้วหาเป็นค่าเฉลี่ยออกมา ซึ่งส่วนมากจะได้ค่าเฉลี่ยดังกล่าวอยู่ในช่วง 200-500 ไบต์ ซึ่งจะทำให้ได้ throughput ประมาณ 300-400 Mbps ซึ่งน่าจะเพียงพอต่อความต้องการในเครือข่ายในองค์กรต่างๆ
อนึ่งวิธีการทำ Carrier Extensionนั้นจะใช้ในการกรณีที่เป็นการรับส่งข้อมูลแบบ Half-Duplex เท่านั้น เพราะในการรับส่งข้อมูลแบบ Fulle-Duplex นั้นจะมีการใช้สายรับและส่งแยกกันคนละชุด จึงไม่มีการชนกันของข้อมูลที่วิ่งสวนทางกัน(Collision) จึงทำให้ไม่ต้องกังวลกับการตรวจจับการชนกัน
เทคนิค Packet Bursting
Packet Bursting เป็นเทคนิคที่จะลดข้อเสียของการใช้ Carrier Extension เทคนิคนี้จะทำงานโดยการเก็บรวบรวม เฟรมที่มีขนาดเล็กกว่า 512 ไบต์หลายๆเฟรมรวมกันให้มีขนาดมากกว่า 512 ไบต์ แล้วจึงทำการส่งออกไป ซึ่งการที่จะทำอย่างนี้ได้ต้องเป็นการทำงานร่วมกันระหว่างตัวแอพพลิเคชั่นและตัว Gigabit Interface Card ซึ่งแอพพลิเคชั่นที่มีอยู่ปัจจุบันจะต้องได้รับแก้ไข เพื่อให้มีความสามารถในการจัดการกับข้อมูลwbr>wb โดยลักษณะที่จะมีการเก็บรวบรวมเฟรมข้อมูลให้ได้ขนาดที่ต้องการแล้วส่งออกไปทีเดียวนี่เองทำwbr>wbrr>>wbrr>r>>wbr>br>r>rb<wbr>wbr>r>rbr>>> เช่นการขอเปิดเน็ตเวิร์คไฟล์ หรือการตอบรับ (Acknowledge) ซึ่งปัญหานี้กำลังอยู่ในระหว่างการตัดสินว่าจะให้มีการแก้ไขอย่างไร โดยอาจจะให้เป็นหน้าที่ของ Protocol ที่จะทำหน้าที่แก้ปัญหาให้ส่วนนี้ หรืออาจจะแก้ที่ตัว Packet Bursting ให้มีการกำหนดเวลาในการรวบรวมเฟรมที่มีขนาดเล็กกว่า 512 ไบต์ ซึ่งถ้าเกินเวลาที่กำหนดแล้วแต่ว่ายังไม่สามารถรวบรวมข้อมูลได้มากว่า 512 ไบต์ ก็ให้ทำการส่งออกไปโดยใช้วิธี Carrier Extension
Buffer Distributor
Buffer Distributor เป็นอุปกรณ์ของ Gigabit Ethernet ที่สามารถเพิ่มประสิทธิภาพของระบบได้โดยลดข้อจำกัดของ Carrier Extension โดยอุปกรณ์นี้จะมีการทำงานที่รวมคุณลักษณะของ Repeaterและ Switch เข้าด้วยกัน อุปกรณ์นี้จะใช้การเชื่อมต่อแบบ Full-Duplex และ Flow Control(IEEE802.3x) มันสามารถทำงานเหมือนกับRepeater คือส่งข้อมูลทุก packet ไปยังทุกๆPort ที่มีการเชื่อมต่ออยู่ และสามารถทำงานในลักษณะของ Switchคือการรับข้อมูลจากหลายPort ได้พร้อมกันแล้วนำข้อมูลนั้นไปเก็บไว้ในหน่วยความจำ(Buffer) และเมื่อมีการเขียนลงจนเต็มทางอุปกรณ์นี้ก็จะใช้ Flow Control ส่งสัญญาณให้โหนดที่ส่งขอมูลนั้นหยุดคอยจนกว่า Buffer นั้นจะว่างลงอีกครั้ง (หลังจากอุปกรณ์ได้ทำการส่งข้อมูลในBuffer เหล่านั้นไปยังปลายทางเรียบร้อยแล้ว) วิธีนี้ก็จะสามารถให้ Throughput ได้เกือบ 100% แต่ข้อจำกัดของวิธีนี้คือทุกโหนดที่เชื่อมต่อกับอุปกรณ์นี้จะต้องเป็นแบบFull-Duplex และสนับสนุนมาตราฐาน IEEE 802.3x ด้วย สายสัญญาณ
ในปัจจุบันแม้ว่าทางผู้ที่กำหนดมาตราฐาน IEEE802.3z จะได้กำหนดให้สามารถใช้สาย UTP cat5สำหรับรองรับความเร็วในระดับ 1 Gbpsได้แต่ก็ยังไม่มีผลิตภัณฑ์ในท้องตลาด (เป็นผลิตภัณฑ์ที่ออกมาก่อนมีการประกาศใช้มาตราฐาน) ชิ้นใดใช้สายUTP cat5 เป็นสายสัญญาณโดยทั้งหมดเลือกใช้เส้นใยแก้วนำแสง(Optic Fiber) ซึ่งถ้าเป็นสายแบบ Multi-mode ขนาด 62.5 micron และใช้ความยาวคลื่นแสง 780 nanometer จะได้ระยะไกลประมาณ 550 เมตร แต่ถ้าใช้สายแบบ Single-mode ที่ใช้ความยาวคลื่นแสง 1300 nanometer จะทำให้ส่งได้ไกลมากกว่า 2 กิโลเมตร เป็นที่ทราบกันว่าการใช้เส้นใยแก้วนำแสงนั้นจะทำให้เกิดค่าใช้จ่ายที่สูงทั้งนี้เนื่องมาจากค่าwbr>wbr>wbrr>br>>, หัวต่อและอุปกรณ์ที่เกี่ยวข้อง ตลอดจนค่าใช้ใจในการติดตั้งสาย และค่าบำรุงรักษา ทำให้ทางคณะทำงานเกี่ยวกับมาตราฐาน IEEE 802.3zได้พยายามเสนอให้มีการใช้สายทองแดงแบบอื่นเพื่อนำมาใช้งานในระยะที่ไม่เกิน 30 เมตร ซึ่งปัญหาที่เกิดขึ้นกับสายทองแดงคือการเกิด Echo เมื่อสัญญาณไฟฟ้าวิ่งผ่านจากตัวทองแดงไปยังวัตถุอื่นที่เป็นทางผ่านของสัญญาณ เช่น หัวต่อ RJ45 ซึ่งการเกิดEcho นี้ก็มีใน Ethernet แบบ 10 และ 100 Mbps แต่ว่ายังไม่มีผลมากเมื่อเทียบกับการรับส่งที่ความเร็ว 1 Gbps การเปลี่ยนไปใช้ Gigabit Ethernet
ทางคณะทำงานของ IEEE802.3z ได้เสนอการนำอุปกรณ์ Gigabit Ethernet ไปใช้ทดแทนนอุปกรณ์ต่างๆที่มีอยู่แล้วเพื่อเพิ่มความเร็วในการรับส่งข้อมูลโดยแบ่งได้เป็น 5 ขั้นตอนดังนี้
1. เพิ่มความเร็วของ Switch-to-Server Linkวิธีการเพิ่มความเร็วที่ง่ายที่สุดก็คือการเพิ่มความเร็วในการรับส่งข้อมูลระหว่างตัว Gigabit switch กับ Serverประสิทธิภาพสูงซึ่งติดตั้ง Gigabit interface card
รูป ที่ 2.1 แสดง เครือ ข่าย ก่อน เปลี่ยน มา ใช้ อุปกรณ์ Gigabit Ethernet
รูป ที่ 2.2 แสดง เครือ ข่าย หลัง เปลี่ยน มา ใช้ อุปกรณ์ Gigabit Ethernet
2.การแทนที่เครือข่ายแกนหลักที่ใช้ Fast Ethernet อยู่ก่อนในเครือข่ายขนาดเล็กจนถึงขนาดกลางที่ ใช้ Fast Ethernet Switch เป็นอุปกรณ์เครือข่ายแกนหลัก (Backbone Switch) ก็อาจจะรองรับความต้องการใน รับส่งข้อมูลที่มีปริมาณเพิ่มขึ้นอย่างรวดเร็วไม่ได้การนำ Gigabit Ethernet Switch มาทำหน้าที่เป็น Backbone Switch แทนก็จะทำให้สามารถเพิ่ม Bandwidth ได้อย่างเพียงพอต่อความต้องการในปัจจุบัน และอนาคต
3. เพิ่มความเร็วของ Switch-to-Switch Link ในเครือข่ายที่มีขนาด ใหญ่ขึ้นและ มี Ethernet/Fast Ethernet switch/repeater อยู่จะทำให้มีปริมาณข้อมูลที่ต้องส่งผ่านระหว่าง Switch/Repeater ที่มี Server ต่ออยู่ด้วยนั้นสูงมากจนต้องการการเพิ่มขยายการนำ Gigabit Ethernet เข้ามาแทนที่ Ethernet/Fast Ethernet Switch/Repeater เหล่านี้ก็จะสามารถเพิ่มประสิทธิภาพโดยรวมของระบบได้
4. การแทนที่เครือข่ายแกนหลักที่ใช้ Shared FDDI อยู่ก่อนเครือข่ายที่ใช้เทคโนโลยี FDDI สามารถจะทำ การเปลี่ยนมาใช้ Gigabit Ethernet ได้โดยการนำเอา Gigabit Ethernet Switch/Repeater ไปแทนที่ FDDI Concentrator หรืออาจจะเพียงนำ Gigabit Ethernet Interface Card ไปเปลี่ยนกับ FDDI Interface Card ใน Router ที่มีใช้งานอยู่แล้ว ทั้งนี้การเปลี่ยนแปลงนี้ไม่ต้องมีการลงทุนเกี่ยวกับเรื่องสาย สัญญาณเลย เนื่องจาก FDDI ส่วนมากก็จะใช้เส้นใยแก้วนำแสงเป็นพื้นฐานอยู่แล้ว
Gigabit Ethernet กับ ATM
ด้วยความเร็วในระดับ 1 Gbps และราคาต่อ port ของ Gigabit Ethernet ที่ถูกกว่า เทคโนโลยี ATM ทำให้ดูเหมือนว่า Gigabit Ethernet อาจจะมาแทนที่ ATM ในอนาคต แต่โดยความเป้นจริงพื้นฐานทางด้านการออกแบบปล้วจะพบว่า เทคโนโลยีทั้งสองนั้น ออกแบบมาบนพื้นฐานที่ต่างกันออกไป ทำให้แต่ละอันนั้นมีข้อดีข้อเสียต่างออกไป นั่นคือ Gigabit Ethernet นั้นออกแบบโดยมีจุดประสงค์หลักในการเข้ากันได้กับEthernet รุ่นก่อนๆที่ได้มีใช้กันอย่างแพร่หลายแล้วในปัจจุบันนี้ ซึ่งจะมีข้อเสียตรงที่ว่ามันจะออกแบบมาเพื่อการรับส่องข้อมูลคอมพิวเตอร์เท่านั้น ในขณะที่เทคโนโลยี ATM เป็นเทคโนโลยีใหม่แล้สามารถจะสนับสนุน Ethernetแต่ก็จะมีราคาต่อ port ที่แพงกว่า Gigabit Ethernet ส่วนข้อดีของ ATM คือการที่มันออกแบบมาโดยให้มีขนาดของเฟรมของข้อมูล(จะเรียกว่า Cell)ที่มีขนาดคงที่ซึ่งจะไม่มีปัญหาเรื่องThroughput อย่าง Gigabit Ethernetดังที่ได้กล่าวมาแล้วข้างต้น นอกจากนี้เทคโนโลยี ATMได้ออกแบบมาเพื่อรองรับข้อมูลได้หลายประเภททั้งข้อมูลที่ขึ้นและไม่ขึ้นกับเวลาจริง(non-Real-time และ Real-time Data)
คุณภาพของการบริการ (Quality of Service, QoS) QoSเป็นระดับในการให้บริการข้อมูลซึ่งมันจะรับประกันอัตราความเร็วในการส่งข้อมูลหนึ่งๆที่อยู่ในรดับเดียวwbr>wbr<wbr>>wr>br<จะถูกกำหนดไว้ให้โดยเฉพาะ(Dedicated bandwidth) ซึ่งสามารถพบบริการเหล่านี้ได้ใน เทคโนโลยี ATM ซึ่งเป็นการใช้ QoS กับ Real-time Data เพื่อให้ Gigabit Ethernet สามารถรองรับการรับส่งข้อมูลเวลาจริง (Real-time data) และสนับสนุนQoS คณะทำงานของ IEEE802.3z จึงได้ทดลองนำเอากลไก RSVP (Resource Reservation Protocol) มาใช้เพื่อให้ Gigabit สามารถรองรับ QoS ซึ่งก็ยังไม่ได้มีการประกาศเป็นมาตราฐานออกมา ณ.ขณะนี้ ในปัจจุบันมาตราฐานGigabit Ethernet (IEEE802.3z)ยังอยู่ในระหว่างการพิจารณาประกาศใช้อย่างเป็นทางการ ซึ่งหมายความว่าอาจจะมีการปรับปรุงแก้ไขในรายละเอียดของค่าพารามิเตอร์ต่างได้อีก จึงนับเป็นการเร็วเกินไปที่จะจัดหาอุปกรณ์ Gigabit Ethernet ในท้องตลาดมาใช้ทั้งนี้เนื่องด้วยเหตุผลทางด้านความเข้ากันได้กับอุปกรณ์ในแบบเดียวกันของต่างผู้ผลิตซึ่งอาจwbr>wb<wbr>r>r>wb<<wbr>wbrr>>r>br>wbr>b<<<wbr>wbr>br>wbrbr>wbr และ Gigabit Ethernet ก็ไม่สารมารถจะใช้ทดแทนเทคโนโลยี ATM ได้ ดังนั้นการนำ Gigabit Ethernet มาใช้ให้ได้ประโยชน์สูงสุดก็คือการนำมาเพิ่มประสิทธิ์ภาพในการรับส่งข้อมูลของเครือข่าย Ethernet ที่มีอยู่เดิมให้ดีขึ้นดังที่กล่าวมาแล้วข้างต้น